Cross-Domain Few-Shot Graph Classification

Kaveh Hassani

[AAAI-22] Main Track
Abstract: We study the problem of few-shot graph classification across domains with nonequivalent feature spaces by introducing three new cross-domain benchmarks constructed from publicly available datasets. We also propose an attention-based graph encoder that uses three congruent views of graphs, one contextual and two topological views, to learn representations of task-specific information for fast adaptation, and task-agnostic information for knowledge transfer. We run exhaustive experiments to evaluate the performance of contrastive and meta-learning strategies. We show that when coupled with metric-based meta-learning frameworks, the proposed encoder achieves the best average meta-test classification accuracy across all benchmarks.

Introduction Video

Sessions where this paper appears

  • Poster Session 5

    Sat, February 26 12:45 AM - 2:30 AM (+00:00)
    Blue 3
    Add to Calendar

  • Poster Session 10

    Sun, February 27 4:45 PM - 6:30 PM (+00:00)
    Blue 3
    Add to Calendar