MMAN: Metapath Based Multi-Level Graph Attention Networks for Heterogeneous Network Embedding (Student Abstract)

Jie Liu, Lingyun Song, Li Gao, Xuequn Shang

[AAAI-22] Student Abstract and Poster Program
Abstract: Current Heterogeneous Network Embedding (HNE) models can be roughly divided into two types, i.e., relation-aware and metapath-aware models. However, they either fail to represent the non-pairwise relations in heterogeneous graph, or only capable of capturing local information around target node. In this paper, we propose a metapath based multilevel graph attention networks (MMAN) to jointly learn node embeddings on two substructures, i.e., metapath based graphs and hypergraphs extracted from original heterogeneous graph. Extensive experiments on three benchmark datasets for node classification and node clustering demonstrate the superiority of MMAN over the state-of-the-art works.

Sessions where this paper appears

  • Poster Session 6

    Sat, February 26 8:45 AM - 10:30 AM (+00:00)
    Blue 4
    Add to Calendar

  • Poster Session 10

    Sun, February 27 4:45 PM - 6:30 PM (+00:00)
    Blue 4
    Add to Calendar