Exploring Entity Interactions for Few-Shot Relation Learning (Student Abstract)

Yi Liang, Shuai Zhao, Bo Cheng, Yuwei Yin, Hao Yang

[AAAI-22] Student Abstract and Poster Program - FINALIST
Abstract: Few-shot relation learning refers to infer facts for relations with a few observed triples. Existing metric-learning methods mostly neglect entity interactions within and between triples. In this paper, we explore this kind of fine-grained semantic meaning and propose our model TransAM. Specifically, we serialize reference entities and query entities into sequence and apply transformer structure with local-global attention to capture intra- and inter-triple entity interactions. Experiments on two public datasets with 1-shot setting prove the effectiveness of TransAM.

Introduction Video

Sessions where this paper appears

  • Poster Session 3

    Fri, February 25 8:45 AM - 10:30 AM (+00:00)
    Blue 5
    Add to Calendar

  • Poster Session 7

    Sat, February 26 4:45 PM - 6:30 PM (+00:00)
    Blue 5
    Add to Calendar